This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ELEMENTARY NUMBER THEORY
Elementary properties of divisibility
Even and odd numbers
zeo5
Metamath Proof Explorer
Description: An integer is either even or odd, version of zeo3 avoiding the negation
of the representation of an odd number. (Proposed by BJ, 21-Jun-2021.)
(Contributed by AV , 26-Jun-2021)
Ref
Expression
Assertion
zeo5
⊢ N ∈ ℤ → 2 ∥ N ∨ 2 ∥ N + 1
Proof
Step
Hyp
Ref
Expression
1
zeo3
⊢ N ∈ ℤ → 2 ∥ N ∨ ¬ 2 ∥ N
2
oddp1even
⊢ N ∈ ℤ → ¬ 2 ∥ N ↔ 2 ∥ N + 1
3
2
bicomd
⊢ N ∈ ℤ → 2 ∥ N + 1 ↔ ¬ 2 ∥ N
4
3
orbi2d
⊢ N ∈ ℤ → 2 ∥ N ∨ 2 ∥ N + 1 ↔ 2 ∥ N ∨ ¬ 2 ∥ N
5
1 4
mpbird
⊢ N ∈ ℤ → 2 ∥ N ∨ 2 ∥ N + 1