This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Range Cartesian product
xrninxpex
Metamath Proof Explorer
Description: Sufficient condition for the intersection of a range Cartesian product
with a Cartesian product to be a set. (Contributed by Peter Mazsa , 12-Apr-2020)
Ref
Expression
Assertion
xrninxpex
⊢ A ∈ V ∧ B ∈ W ∧ C ∈ X → R ⋉ S ∩ A × B × C ∈ V
Proof
Step
Hyp
Ref
Expression
1
xpexg
⊢ B ∈ W ∧ C ∈ X → B × C ∈ V
2
inxpex
⊢ R ⋉ S ∈ V ∨ A ∈ V ∧ B × C ∈ V → R ⋉ S ∩ A × B × C ∈ V
3
2
olcs
⊢ A ∈ V ∧ B × C ∈ V → R ⋉ S ∩ A × B × C ∈ V
4
1 3
sylan2
⊢ A ∈ V ∧ B ∈ W ∧ C ∈ X → R ⋉ S ∩ A × B × C ∈ V
5
4
3impb
⊢ A ∈ V ∧ B ∈ W ∧ C ∈ X → R ⋉ S ∩ A × B × C ∈ V