This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem xrleidd

Description: 'Less than or equal to' is reflexive for extended reals. Deduction form of xrleid . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis xrleidd.1 φ A *
Assertion xrleidd φ A A

Proof

Step Hyp Ref Expression
1 xrleidd.1 φ A *
2 xrleid A * A A
3 1 2 syl φ A A