This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Equinumerosity
xpsneng
Metamath Proof Explorer
Description: A set is equinumerous to its Cartesian product with a singleton.
Proposition 4.22(c) of Mendelson p. 254. (Contributed by NM , 22-Oct-2004)
Ref
Expression
Assertion
xpsneng
⊢ A ∈ V ∧ B ∈ W → A × B ≈ A
Proof
Step
Hyp
Ref
Expression
1
xpeq1
⊢ x = A → x × y = A × y
2
id
⊢ x = A → x = A
3
1 2
breq12d
⊢ x = A → x × y ≈ x ↔ A × y ≈ A
4
sneq
⊢ y = B → y = B
5
4
xpeq2d
⊢ y = B → A × y = A × B
6
5
breq1d
⊢ y = B → A × y ≈ A ↔ A × B ≈ A
7
vex
⊢ x ∈ V
8
vex
⊢ y ∈ V
9
7 8
xpsnen
⊢ x × y ≈ x
10
3 6 9
vtocl2g
⊢ A ∈ V ∧ B ∈ W → A × B ≈ A