This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC STRUCTURES
Extensible structures
Definition of the structure quotient
xpsff1o2
Metamath Proof Explorer
Description: The function appearing in xpsval is a bijection from the cartesian
product to the indexed cartesian product indexed on the pair
2o = { (/) , 1o } . (Contributed by Mario Carneiro , 24-Jan-2015)
Ref
Expression
Hypothesis
xpsff1o.f
⊢ F = x ∈ A , y ∈ B ⟼ ∅ x 1 𝑜 y
Assertion
xpsff1o2
⊢ F : A × B ⟶ 1-1 onto ran ⁡ F
Proof
Step
Hyp
Ref
Expression
1
xpsff1o.f
⊢ F = x ∈ A , y ∈ B ⟼ ∅ x 1 𝑜 y
2
1
xpsff1o
⊢ F : A × B ⟶ 1-1 onto ⨉ k ∈ 2 𝑜 if k = ∅ A B
3
f1of1
⊢ F : A × B ⟶ 1-1 onto ⨉ k ∈ 2 𝑜 if k = ∅ A B → F : A × B ⟶ 1-1 ⨉ k ∈ 2 𝑜 if k = ∅ A B
4
f1f1orn
⊢ F : A × B ⟶ 1-1 ⨉ k ∈ 2 𝑜 if k = ∅ A B → F : A × B ⟶ 1-1 onto ran ⁡ F
5
2 3 4
mp2b
⊢ F : A × B ⟶ 1-1 onto ran ⁡ F