This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem xorneg

Description: The connector \/_ is unchanged under negation of both arguments. (Contributed by Mario Carneiro, 4-Sep-2016)

Ref Expression
Assertion xorneg ¬ φ ¬ ψ φ ψ

Proof

Step Hyp Ref Expression
1 xorneg1 ¬ φ ¬ ψ ¬ φ ¬ ψ
2 xorneg2 φ ¬ ψ ¬ φ ψ
3 2 con2bii φ ψ ¬ φ ¬ ψ
4 1 3 bitr4i ¬ φ ¬ ψ φ ψ