This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem wrdsymbcl

Description: A symbol within a word over an alphabet belongs to the alphabet. (Contributed by Alexander van der Vekens, 28-Jun-2018)

Ref Expression
Assertion wrdsymbcl W Word V I 0 ..^ W W I V

Proof

Step Hyp Ref Expression
1 wrdf W Word V W : 0 ..^ W V
2 1 ffvelcdmda W Word V I 0 ..^ W W I V