This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Words over a set
Definitions and basic theorems
wrdlndm
Metamath Proof Explorer
Description: The length of a word is not in the domain of the word (regarded as a
function). (Contributed by AV , 3-Mar-2021) (Proof shortened by JJ , 18-Nov-2022)
Ref
Expression
Assertion
wrdlndm
⊢ W ∈ Word V → W ∉ dom ⁡ W
Proof
Step
Hyp
Ref
Expression
1
fzonel
⊢ ¬ W ∈ 0 ..^ W
2
1
a1i
⊢ W ∈ Word V → ¬ W ∈ 0 ..^ W
3
wrddm
⊢ W ∈ Word V → dom ⁡ W = 0 ..^ W
4
2 3
neleqtrrd
⊢ W ∈ Word V → ¬ W ∈ dom ⁡ W
5
df-nel
⊢ W ∉ dom ⁡ W ↔ ¬ W ∈ dom ⁡ W
6
4 5
sylibr
⊢ W ∈ Word V → W ∉ dom ⁡ W