This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
GRAPH THEORY
Walks, paths and cycles
Walks
wlkf
Metamath Proof Explorer
Description: The mapping enumerating the (indices of the) edges of a walk is a word
over the indices of the edges of the graph. (Contributed by AV , 5-Apr-2021)
Ref
Expression
Hypothesis
wlkf.i
⊢ I = iEdg ⁡ G
Assertion
wlkf
⊢ F Walks ⁡ G P → F ∈ Word dom ⁡ I
Proof
Step
Hyp
Ref
Expression
1
wlkf.i
⊢ I = iEdg ⁡ G
2
eqid
⊢ Vtx ⁡ G = Vtx ⁡ G
3
2 1
wlkprop
⊢ F Walks ⁡ G P → F ∈ Word dom ⁡ I ∧ P : 0 … F ⟶ Vtx ⁡ G ∧ ∀ k ∈ 0 ..^ F if- P ⁡ k = P ⁡ k + 1 I ⁡ F ⁡ k = P ⁡ k P ⁡ k P ⁡ k + 1 ⊆ I ⁡ F ⁡ k
4
3
simp1d
⊢ F Walks ⁡ G P → F ∈ Word dom ⁡ I