This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
GRAPH THEORY
Walks, paths and cycles
Examples for walks, trails and paths
wlk2v2elem1
Metamath Proof Explorer
Description: Lemma 1 for wlk2v2e : F is a length 2 word of over { 0 } , the
domain of the singleton word I . (Contributed by Alexander van der
Vekens , 22-Oct-2017) (Revised by AV , 9-Jan-2021)
Ref
Expression
Hypotheses
wlk2v2e.i
⊢ I = 〈“ X Y ”〉
wlk2v2e.f
⊢ F = 〈“ 0 0 ”〉
Assertion
wlk2v2elem1
⊢ F ∈ Word dom ⁡ I
Proof
Step
Hyp
Ref
Expression
1
wlk2v2e.i
⊢ I = 〈“ X Y ”〉
2
wlk2v2e.f
⊢ F = 〈“ 0 0 ”〉
3
c0ex
⊢ 0 ∈ V
4
3
snid
⊢ 0 ∈ 0
5
id
⊢ 0 ∈ 0 → 0 ∈ 0
6
5 5
s2cld
⊢ 0 ∈ 0 → 〈“ 0 0 ”〉 ∈ Word 0
7
4 6
ax-mp
⊢ 〈“ 0 0 ”〉 ∈ Word 0
8
1
dmeqi
⊢ dom ⁡ I = dom ⁡ 〈“ X Y ”〉
9
s1dm
⊢ dom ⁡ 〈“ X Y ”〉 = 0
10
8 9
eqtri
⊢ dom ⁡ I = 0
11
10
wrdeqi
⊢ Word dom ⁡ I = Word 0
12
7 2 11
3eltr4i
⊢ F ∈ Word dom ⁡ I