This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
weinxp
Metamath Proof Explorer
Description: Intersection of well-ordering with Cartesian product of its field.
(Contributed by NM , 9-Mar-1997) (Revised by Mario Carneiro , 10-Jul-2014)
Ref
Expression
Assertion
weinxp
⊢ R We A ↔ R ∩ A × A We A
Proof
Step
Hyp
Ref
Expression
1
frinxp
⊢ R Fr A ↔ R ∩ A × A Fr A
2
soinxp
⊢ R Or A ↔ R ∩ A × A Or A
3
1 2
anbi12i
⊢ R Fr A ∧ R Or A ↔ R ∩ A × A Fr A ∧ R ∩ A × A Or A
4
df-we
⊢ R We A ↔ R Fr A ∧ R Or A
5
df-we
⊢ R ∩ A × A We A ↔ R ∩ A × A Fr A ∧ R ∩ A × A Or A
6
3 4 5
3bitr4i
⊢ R We A ↔ R ∩ A × A We A