This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
GRAPH THEORY
Undirected graphs
Subgraphs
usgrspan
Metamath Proof Explorer
Description: A spanning subgraph S of a simple graph G is a simple graph.
(Contributed by AV , 15-Oct-2020) (Revised by AV , 16-Oct-2020) (Proof
shortened by AV , 18-Nov-2020)
Ref
Expression
Hypotheses
uhgrspan.v
⊢ V = Vtx ⁡ G
uhgrspan.e
⊢ E = iEdg ⁡ G
uhgrspan.s
⊢ φ → S ∈ W
uhgrspan.q
⊢ φ → Vtx ⁡ S = V
uhgrspan.r
⊢ φ → iEdg ⁡ S = E ↾ A
usgrspan.g
⊢ φ → G ∈ USGraph
Assertion
usgrspan
⊢ φ → S ∈ USGraph
Proof
Step
Hyp
Ref
Expression
1
uhgrspan.v
⊢ V = Vtx ⁡ G
2
uhgrspan.e
⊢ E = iEdg ⁡ G
3
uhgrspan.s
⊢ φ → S ∈ W
4
uhgrspan.q
⊢ φ → Vtx ⁡ S = V
5
uhgrspan.r
⊢ φ → iEdg ⁡ S = E ↾ A
6
usgrspan.g
⊢ φ → G ∈ USGraph
7
usgruhgr
⊢ G ∈ USGraph → G ∈ UHGraph
8
6 7
syl
⊢ φ → G ∈ UHGraph
9
1 2 3 4 5 8
uhgrspansubgr
⊢ φ → S SubGraph G
10
subusgr
⊢ G ∈ USGraph ∧ S SubGraph G → S ∈ USGraph
11
6 9 10
syl2anc
⊢ φ → S ∈ USGraph