This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
GRAPH THEORY
Undirected graphs
Undirected simple graphs
usgredg2vtx
Metamath Proof Explorer
Description: For a vertex incident to an edge there is another vertex incident to the
edge in a simple graph. (Contributed by AV , 18-Oct-2020) (Proof
shortened by AV , 5-Dec-2020)
Ref
Expression
Assertion
usgredg2vtx
⊢ G ∈ USGraph ∧ E ∈ Edg ⁡ G ∧ Y ∈ E → ∃ y ∈ Vtx ⁡ G E = Y y
Proof
Step
Hyp
Ref
Expression
1
usgrupgr
⊢ G ∈ USGraph → G ∈ UPGraph
2
eqid
⊢ Vtx ⁡ G = Vtx ⁡ G
3
eqid
⊢ Edg ⁡ G = Edg ⁡ G
4
2 3
upgredg2vtx
⊢ G ∈ UPGraph ∧ E ∈ Edg ⁡ G ∧ Y ∈ E → ∃ y ∈ Vtx ⁡ G E = Y y
5
1 4
syl3an1
⊢ G ∈ USGraph ∧ E ∈ Edg ⁡ G ∧ Y ∈ E → ∃ y ∈ Vtx ⁡ G E = Y y