This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
GRAPH THEORY
Walks, paths and cycles
Paths and simple paths
usgr2pthspth
Metamath Proof Explorer
Description: In a simple graph, any path of length 2 is a simple path. (Contributed by Alexander van der Vekens , 25-Jan-2018) (Revised by AV , 5-Jun-2021)
Ref
Expression
Assertion
usgr2pthspth
⊢ G ∈ USGraph ∧ F = 2 → F Paths ⁡ G P ↔ F SPaths ⁡ G P
Proof
Step
Hyp
Ref
Expression
1
pthistrl
⊢ F Paths ⁡ G P → F Trails ⁡ G P
2
usgr2trlspth
⊢ G ∈ USGraph ∧ F = 2 → F Trails ⁡ G P ↔ F SPaths ⁡ G P
3
1 2
imbitrid
⊢ G ∈ USGraph ∧ F = 2 → F Paths ⁡ G P → F SPaths ⁡ G P
4
spthispth
⊢ F SPaths ⁡ G P → F Paths ⁡ G P
5
3 4
impbid1
⊢ G ∈ USGraph ∧ F = 2 → F Paths ⁡ G P ↔ F SPaths ⁡ G P