This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rewrite the predicate of universal property in the form of opposite functor. (Contributed by Zhi Wang, 4-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcuprcl2.x | No typesetting found for |- ( ph -> X ( <. F , G >. ( O UP P ) W ) M ) with typecode |- | |
| uptpos.h | |||
| Assertion | uptpos | Could not format assertion : No typesetting found for |- ( ph -> X ( <. F , tpos H >. ( O UP P ) W ) M ) with typecode |- |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcuprcl2.x | Could not format ( ph -> X ( <. F , G >. ( O UP P ) W ) M ) : No typesetting found for |- ( ph -> X ( <. F , G >. ( O UP P ) W ) M ) with typecode |- | |
| 2 | uptpos.h | ||
| 3 | 1 2 | uptposlem | |
| 4 | 3 | opeq2d | |
| 5 | 4 | oveq1d | Could not format ( ph -> ( <. F , tpos H >. ( O UP P ) W ) = ( <. F , G >. ( O UP P ) W ) ) : No typesetting found for |- ( ph -> ( <. F , tpos H >. ( O UP P ) W ) = ( <. F , G >. ( O UP P ) W ) ) with typecode |- |
| 6 | 5 | breqd | Could not format ( ph -> ( X ( <. F , tpos H >. ( O UP P ) W ) M <-> X ( <. F , G >. ( O UP P ) W ) M ) ) : No typesetting found for |- ( ph -> ( X ( <. F , tpos H >. ( O UP P ) W ) M <-> X ( <. F , G >. ( O UP P ) W ) M ) ) with typecode |- |
| 7 | 1 6 | mpbird | Could not format ( ph -> X ( <. F , tpos H >. ( O UP P ) W ) M ) : No typesetting found for |- ( ph -> X ( <. F , tpos H >. ( O UP P ) W ) M ) with typecode |- |