This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
GRAPH THEORY
Eulerian paths and the Konigsberg Bridge problem
Eulerian paths
upgreupthi
Metamath Proof Explorer
Description: Properties of an Eulerian path in a pseudograph. (Contributed by Mario
Carneiro , 12-Mar-2015) (Revised by AV , 18-Feb-2021) (Proof shortened by AV , 30-Oct-2021)
Ref
Expression
Hypotheses
eupths.i
⊢ I = iEdg ⁡ G
upgriseupth.v
⊢ V = Vtx ⁡ G
Assertion
upgreupthi
⊢ G ∈ UPGraph ∧ F EulerPaths ⁡ G P → F : 0 ..^ F ⟶ 1-1 onto dom ⁡ I ∧ P : 0 … F ⟶ V ∧ ∀ k ∈ 0 ..^ F I ⁡ F ⁡ k = P ⁡ k P ⁡ k + 1
Proof
Step
Hyp
Ref
Expression
1
eupths.i
⊢ I = iEdg ⁡ G
2
upgriseupth.v
⊢ V = Vtx ⁡ G
3
1 2
upgriseupth
⊢ G ∈ UPGraph → F EulerPaths ⁡ G P ↔ F : 0 ..^ F ⟶ 1-1 onto dom ⁡ I ∧ P : 0 … F ⟶ V ∧ ∀ k ∈ 0 ..^ F I ⁡ F ⁡ k = P ⁡ k P ⁡ k + 1
4
3
biimpa
⊢ G ∈ UPGraph ∧ F EulerPaths ⁡ G P → F : 0 ..^ F ⟶ 1-1 onto dom ⁡ I ∧ P : 0 … F ⟶ V ∧ ∀ k ∈ 0 ..^ F I ⁡ F ⁡ k = P ⁡ k P ⁡ k + 1