This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A universal property defines an object up to isomorphism given its existence. (Contributed by Zhi Wang, 17-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upcic.b | ||
| upcic.c | |||
| upcic.h | |||
| upcic.j | |||
| upcic.o | |||
| upcic.f | |||
| upcic.x | |||
| upcic.y | |||
| upcic.z | |||
| upcic.m | |||
| upcic.1 | |||
| upcic.n | |||
| upcic.2 | |||
| Assertion | upcic |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upcic.b | ||
| 2 | upcic.c | ||
| 3 | upcic.h | ||
| 4 | upcic.j | ||
| 5 | upcic.o | ||
| 6 | upcic.f | ||
| 7 | upcic.x | ||
| 8 | upcic.y | ||
| 9 | upcic.z | ||
| 10 | upcic.m | ||
| 11 | upcic.1 | ||
| 12 | upcic.n | ||
| 13 | upcic.2 | ||
| 14 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | upciclem4 | |
| 15 | 14 | simpld |