This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC STRUCTURES
Extensible structures
Slot definitions
unifndxntsetndx
Metamath Proof Explorer
Description: The slot for the uniform set is not the slot for the topology in an
extensible structure. Formerly part of proof for tuslem . (Contributed by AV , 28-Oct-2024)
Ref
Expression
Assertion
unifndxntsetndx
⊢ UnifSet ⁡ ndx ≠ TopSet ⁡ ndx
Proof
Step
Hyp
Ref
Expression
1
9re
⊢ 9 ∈ ℝ
2
1nn
⊢ 1 ∈ ℕ
3
3nn0
⊢ 3 ∈ ℕ 0
4
9nn0
⊢ 9 ∈ ℕ 0
5
9lt10
⊢ 9 < 10
6
2 3 4 5
declti
⊢ 9 < 13
7
1 6
gtneii
⊢ 13 ≠ 9
8
unifndx
⊢ UnifSet ⁡ ndx = 13
9
tsetndx
⊢ TopSet ⁡ ndx = 9
10
8 9
neeq12i
⊢ UnifSet ⁡ ndx ≠ TopSet ⁡ ndx ↔ 13 ≠ 9
11
7 10
mpbir
⊢ UnifSet ⁡ ndx ≠ TopSet ⁡ ndx