This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZFC (ZERMELO-FRAENKEL WITH CHOICE) SET THEORY
ZFC Set Theory - add the Axiom of Choice
AC equivalents: well-ordering, Zorn's lemma
unidom
Metamath Proof Explorer
Description: An upper bound for the cardinality of a union. Theorem 10.47 of
TakeutiZaring p. 98. (Contributed by NM , 25-Mar-2006) (Proof
shortened by Mario Carneiro , 1-Sep-2015)
Ref
Expression
Assertion
unidom
⊢ A ∈ V ∧ ∀ x ∈ A x ≼ B → ⋃ A ≼ A × B
Proof
Step
Hyp
Ref
Expression
1
uniiun
⊢ ⋃ A = ⋃ x ∈ A x
2
iundom
⊢ A ∈ V ∧ ∀ x ∈ A x ≼ B → ⋃ x ∈ A x ≼ A × B
3
1 2
eqbrtrid
⊢ A ∈ V ∧ ∀ x ∈ A x ≼ B → ⋃ A ≼ A × B