This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The union of a class
unidif
Metamath Proof Explorer
Description: If the difference A \ B contains the largest members of A , then
the union of the difference is the union of A . (Contributed by NM , 22-Mar-2004)
Ref
Expression
Assertion
unidif
⊢ ∀ x ∈ A ∃ y ∈ A ∖ B x ⊆ y → ⋃ A ∖ B = ⋃ A
Proof
Step
Hyp
Ref
Expression
1
uniss2
⊢ ∀ x ∈ A ∃ y ∈ A ∖ B x ⊆ y → ⋃ A ⊆ ⋃ A ∖ B
2
difss
⊢ A ∖ B ⊆ A
3
2
unissi
⊢ ⋃ A ∖ B ⊆ ⋃ A
4
1 3
jctil
⊢ ∀ x ∈ A ∃ y ∈ A ∖ B x ⊆ y → ⋃ A ∖ B ⊆ ⋃ A ∧ ⋃ A ⊆ ⋃ A ∖ B
5
eqss
⊢ ⋃ A ∖ B = ⋃ A ↔ ⋃ A ∖ B ⊆ ⋃ A ∧ ⋃ A ⊆ ⋃ A ∖ B
6
4 5
sylibr
⊢ ∀ x ∈ A ∃ y ∈ A ∖ B x ⊆ y → ⋃ A ∖ B = ⋃ A