This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Definite description binder (inverted iota)
uniabio
Metamath Proof Explorer
Description: Part of Theorem 8.17 in Quine p. 56. This theorem serves as a lemma
for the fundamental property of iota. (Contributed by Andrew Salmon , 11-Jul-2011)
Ref
Expression
Assertion
uniabio
⊢ ∀ x φ ↔ x = y → ⋃ x | φ = y
Proof
Step
Hyp
Ref
Expression
1
abbi
⊢ ∀ x φ ↔ x = y → x | φ = x | x = y
2
df-sn
⊢ y = x | x = y
3
1 2
eqtr4di
⊢ ∀ x φ ↔ x = y → x | φ = y
4
3
unieqd
⊢ ∀ x φ ↔ x = y → ⋃ x | φ = ⋃ y
5
unisnv
⊢ ⋃ y = y
6
4 5
eqtrdi
⊢ ∀ x φ ↔ x = y → ⋃ x | φ = y