This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
GRAPH THEORY
Undirected graphs
Undirected pseudographs and multigraphs
umgrf
Metamath Proof Explorer
Description: The edge function of an undirected multigraph is a function into
unordered pairs of vertices. Version of umgrfn without explicitly
specified domain of the edge function. (Contributed by AV , 24-Nov-2020)
Ref
Expression
Hypotheses
isumgr.v
⊢ V = Vtx ⁡ G
isumgr.e
⊢ E = iEdg ⁡ G
Assertion
umgrf
⊢ G ∈ UMGraph → E : dom ⁡ E ⟶ x ∈ 𝒫 V | x = 2
Proof
Step
Hyp
Ref
Expression
1
isumgr.v
⊢ V = Vtx ⁡ G
2
isumgr.e
⊢ E = iEdg ⁡ G
3
1 2
isumgrs
⊢ G ∈ UMGraph → G ∈ UMGraph ↔ E : dom ⁡ E ⟶ x ∈ 𝒫 V | x = 2
4
3
ibi
⊢ G ∈ UMGraph → E : dom ⁡ E ⟶ x ∈ 𝒫 V | x = 2