This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Transitive classes
trint
Metamath Proof Explorer
Description: The intersection of a class of transitive sets is transitive. Exercise
5(b) of Enderton p. 73. (Contributed by Scott Fenton , 25-Feb-2011)
(Proof shortened by BJ , 3-Oct-2022)
Ref
Expression
Assertion
trint
⊢ ∀ x ∈ A Tr ⁡ x → Tr ⁡ ⋂ A
Proof
Step
Hyp
Ref
Expression
1
triin
⊢ ∀ x ∈ A Tr ⁡ x → Tr ⁡ ⋂ x ∈ A x
2
intiin
⊢ ⋂ A = ⋂ x ∈ A x
3
treq
⊢ ⋂ A = ⋂ x ∈ A x → Tr ⁡ ⋂ A ↔ Tr ⁡ ⋂ x ∈ A x
4
2 3
ax-mp
⊢ Tr ⁡ ⋂ A ↔ Tr ⁡ ⋂ x ∈ A x
5
1 4
sylibr
⊢ ∀ x ∈ A Tr ⁡ x → Tr ⁡ ⋂ A