This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem tposeq

Description: Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015)

Ref Expression
Assertion tposeq F = G tpos F = tpos G

Proof

Step Hyp Ref Expression
1 eqimss F = G F G
2 tposss F G tpos F tpos G
3 1 2 syl F = G tpos F tpos G
4 eqimss2 F = G G F
5 tposss G F tpos G tpos F
6 4 5 syl F = G tpos G tpos F
7 3 6 eqssd F = G tpos F = tpos G