This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem tospos

Description: A Toset is a Poset. (Contributed by Thierry Arnoux, 20-Jan-2018)

Ref Expression
Assertion tospos F Toset F Poset

Proof

Step Hyp Ref Expression
1 eqid Base F = Base F
2 eqid F = F
3 1 2 istos F Toset F Poset x Base F y Base F x F y y F x
4 3 simplbi F Toset F Poset