This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
"Strong" transfinite recursion
tfrlem3
Metamath Proof Explorer
Description: Lemma for transfinite recursion. Let A be the class of "acceptable"
functions. The final thing we're interested in is the union of all
these acceptable functions. This lemma just changes some bound
variables in A for later use. (Contributed by NM , 9-Apr-1995)
Ref
Expression
Hypothesis
tfrlem3.1
⊢ A = f | ∃ x ∈ On f Fn x ∧ ∀ y ∈ x f ⁡ y = F ⁡ f ↾ y
Assertion
tfrlem3
⊢ A = g | ∃ z ∈ On g Fn z ∧ ∀ w ∈ z g ⁡ w = F ⁡ g ↾ w
Proof
Step
Hyp
Ref
Expression
1
tfrlem3.1
⊢ A = f | ∃ x ∈ On f Fn x ∧ ∀ y ∈ x f ⁡ y = F ⁡ f ↾ y
2
vex
⊢ g ∈ V
3
1 2
tfrlem3a
⊢ g ∈ A ↔ ∃ z ∈ On g Fn z ∧ ∀ w ∈ z g ⁡ w = F ⁡ g ↾ w
4
3
eqabi
⊢ A = g | ∃ z ∈ On g Fn z ∧ ∀ w ∈ z g ⁡ w = F ⁡ g ↾ w