This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem sylan2i

Description: A syllogism inference. (Contributed by NM, 1-Aug-1994)

Ref Expression
Hypotheses sylan2i.1 φ θ
sylan2i.2 ψ χ θ τ
Assertion sylan2i ψ χ φ τ

Proof

Step Hyp Ref Expression
1 sylan2i.1 φ θ
2 sylan2i.2 ψ χ θ τ
3 1 a1i ψ φ θ
4 3 2 sylan2d ψ χ φ τ