This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem syl3anl3

Description: A syllogism inference. (Contributed by NM, 24-Feb-2005)

Ref Expression
Hypotheses syl3anl3.1 φ θ
syl3anl3.2 ψ χ θ τ η
Assertion syl3anl3 ψ χ φ τ η

Proof

Step Hyp Ref Expression
1 syl3anl3.1 φ θ
2 syl3anl3.2 ψ χ θ τ η
3 1 3anim3i ψ χ φ ψ χ θ
4 3 2 sylan ψ χ φ τ η