This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: A supremum is unique. Similar to Theorem I.26 of Apostol p. 24 (but
for suprema in general). (Contributed by NM, 12-Oct-2004)
|
|
Ref |
Expression |
|
Hypotheses |
supmo.1 |
|
|
|
supeu.2 |
|
|
Assertion |
supeu |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
supmo.1 |
|
| 2 |
|
supeu.2 |
|
| 3 |
1
|
supmo |
|
| 4 |
|
reu5 |
|
| 5 |
2 3 4
|
sylanbrc |
|