This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring is a subgroup. (Contributed by AV, 14-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subrngsubg |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrngrcl | ||
| 2 | rnggrp | ||
| 3 | 1 2 | syl | |
| 4 | eqid | ||
| 5 | 4 | subrngss | |
| 6 | eqid | ||
| 7 | 6 | subrngrng | |
| 8 | rnggrp | ||
| 9 | 7 8 | syl | |
| 10 | 4 | issubg | |
| 11 | 3 5 9 10 | syl3anbrc |