This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem subadd23

Description: Commutative/associative law for addition and subtraction. (Contributed by NM, 1-Feb-2007)

Ref Expression
Assertion subadd23 A B C A - B + C = A + C - B

Proof

Step Hyp Ref Expression
1 addsub A C B A + C - B = A - B + C
2 addsubass A C B A + C - B = A + C - B
3 1 2 eqtr3d A C B A - B + C = A + C - B
4 3 3com23 A B C A - B + C = A + C - B