This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem ssinss1d

Description: Intersection preserves subclass relationship. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis ssinss1d.1 φ A C
Assertion ssinss1d φ A B C

Proof

Step Hyp Ref Expression
1 ssinss1d.1 φ A C
2 ssinss1 A C A B C
3 1 2 syl φ A B C