This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem soasym

Description: Asymmetry law for strict orderings. (Contributed by Scott Fenton, 24-Nov-2021)

Ref Expression
Assertion soasym R Or A X A Y A X R Y ¬ Y R X

Proof

Step Hyp Ref Expression
1 sotric R Or A X A Y A X R Y ¬ X = Y Y R X
2 pm2.46 ¬ X = Y Y R X ¬ Y R X
3 1 2 biimtrdi R Or A X A Y A X R Y ¬ Y R X