This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC STRUCTURES
Extensible structures
Slot definitions
slotsdifplendx
Metamath Proof Explorer
Description: The index of the slot for the distance is not the index of other slots.
Formerly part of proof for cnfldfunALT . (Contributed by AV , 11-Nov-2024)
Ref
Expression
Assertion
slotsdifplendx
⊢ * ndx ≠ ≤ ndx ∧ TopSet ⁡ ndx ≠ ≤ ndx
Proof
Step
Hyp
Ref
Expression
1
4re
⊢ 4 ∈ ℝ
2
4lt10
⊢ 4 < 10
3
1 2
ltneii
⊢ 4 ≠ 10
4
starvndx
⊢ * ndx = 4
5
plendx
⊢ ≤ ndx = 10
6
4 5
neeq12i
⊢ * ndx ≠ ≤ ndx ↔ 4 ≠ 10
7
3 6
mpbir
⊢ * ndx ≠ ≤ ndx
8
9re
⊢ 9 ∈ ℝ
9
9lt10
⊢ 9 < 10
10
8 9
ltneii
⊢ 9 ≠ 10
11
tsetndx
⊢ TopSet ⁡ ndx = 9
12
11 5
neeq12i
⊢ TopSet ⁡ ndx ≠ ≤ ndx ↔ 9 ≠ 10
13
10 12
mpbir
⊢ TopSet ⁡ ndx ≠ ≤ ndx
14
7 13
pm3.2i
⊢ * ndx ≠ ≤ ndx ∧ TopSet ⁡ ndx ≠ ≤ ndx