This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Subspaces and projections
Subspace sum, span, lattice join, lattice supremum
shunssji
Metamath Proof Explorer
Description: Union is smaller than Hilbert lattice join. (Contributed by NM , 11-Jun-2004) (Revised by Mario Carneiro , 15-May-2014)
(New usage is discouraged.)
Ref
Expression
Hypotheses
shincl.1
⊢ A ∈ S ℋ
shincl.2
⊢ B ∈ S ℋ
Assertion
shunssji
⊢ A ∪ B ⊆ A ∨ ℋ B
Proof
Step
Hyp
Ref
Expression
1
shincl.1
⊢ A ∈ S ℋ
2
shincl.2
⊢ B ∈ S ℋ
3
1
shssii
⊢ A ⊆ ℋ
4
2
shssii
⊢ B ⊆ ℋ
5
3 4
unssi
⊢ A ∪ B ⊆ ℋ
6
ococss
⊢ A ∪ B ⊆ ℋ → A ∪ B ⊆ ⊥ ⁡ ⊥ ⁡ A ∪ B
7
5 6
ax-mp
⊢ A ∪ B ⊆ ⊥ ⁡ ⊥ ⁡ A ∪ B
8
shjval
⊢ A ∈ S ℋ ∧ B ∈ S ℋ → A ∨ ℋ B = ⊥ ⁡ ⊥ ⁡ A ∪ B
9
1 2 8
mp2an
⊢ A ∨ ℋ B = ⊥ ⁡ ⊥ ⁡ A ∪ B
10
7 9
sseqtrri
⊢ A ∪ B ⊆ A ∨ ℋ B