This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Subspaces and projections
Subspace sum, span, lattice join, lattice supremum
shsval
Metamath Proof Explorer
Description: Value of subspace sum of two Hilbert space subspaces. Definition of
subspace sum in Kalmbach p. 65. (Contributed by NM , 16-Oct-1999)
(Revised by Mario Carneiro , 23-Dec-2013)
(New usage is discouraged.)
Ref
Expression
Assertion
shsval
⊢ A ∈ S ℋ ∧ B ∈ S ℋ → A + ℋ B = + ℎ A × B
Proof
Step
Hyp
Ref
Expression
1
xpeq12
⊢ x = A ∧ y = B → x × y = A × B
2
1
imaeq2d
⊢ x = A ∧ y = B → + ℎ x × y = + ℎ A × B
3
df-shs
⊢ + ℋ = x ∈ S ℋ , y ∈ S ℋ ⟼ + ℎ x × y
4
hilablo
⊢ + ℎ ∈ AbelOp
5
imaexg
⊢ + ℎ ∈ AbelOp → + ℎ A × B ∈ V
6
4 5
ax-mp
⊢ + ℎ A × B ∈ V
7
2 3 6
ovmpoa
⊢ A ∈ S ℋ ∧ B ∈ S ℋ → A + ℋ B = + ℎ A × B