This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
The infinite sequence builder "seq" - extension
serf
Metamath Proof Explorer
Description: An infinite series of complex terms is a function from NN to
CC . (Contributed by NM , 18-Apr-2005) (Revised by Mario
Carneiro , 27-May-2014)
Ref
Expression
Hypotheses
serf.1
⊢ Z = ℤ ≥ M
serf.2
⊢ φ → M ∈ ℤ
serf.3
⊢ φ ∧ k ∈ Z → F ⁡ k ∈ ℂ
Assertion
serf
⊢ φ → seq M + F : Z ⟶ ℂ
Proof
Step
Hyp
Ref
Expression
1
serf.1
⊢ Z = ℤ ≥ M
2
serf.2
⊢ φ → M ∈ ℤ
3
serf.3
⊢ φ ∧ k ∈ Z → F ⁡ k ∈ ℂ
4
addcl
⊢ k ∈ ℂ ∧ x ∈ ℂ → k + x ∈ ℂ
5
4
adantl
⊢ φ ∧ k ∈ ℂ ∧ x ∈ ℂ → k + x ∈ ℂ
6
1 2 3 5
seqf
⊢ φ → seq M + F : Z ⟶ ℂ