This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem sbim

Description: Implication inside and outside of a substitution are equivalent. (Contributed by NM, 14-May-1993)

Ref Expression
Assertion sbim y x φ ψ y x φ y x ψ

Proof

Step Hyp Ref Expression
1 sbi1 y x φ ψ y x φ y x ψ
2 sbi2 y x φ y x ψ y x φ ψ
3 1 2 impbii y x φ ψ y x φ y x ψ