This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for substitution of a class for an ordered pair (analogue of sbceq1a that avoids the existential quantifiers of copsexg ). (Contributed by NM, 19-Aug-2006) (Revised by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcopeq1a |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ||
| 2 | vex | ||
| 3 | 1 2 | op2ndd | |
| 4 | 3 | eqcomd | |
| 5 | sbceq1a | ||
| 6 | 4 5 | syl | |
| 7 | 1 2 | op1std | |
| 8 | 7 | eqcomd | |
| 9 | sbceq1a | ||
| 10 | 8 9 | syl | |
| 11 | 6 10 | bitr2d |