This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: Conversion of implicit substitution to explicit class substitution,
deduction form. (Contributed by NM, 29-Dec-2014)
|
|
Ref |
Expression |
|
Hypotheses |
sbcied.1 |
|
|
|
sbcied.2 |
|
|
|
sbciedf.3 |
|
|
|
sbciedf.4 |
|
|
Assertion |
sbciedf |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbcied.1 |
|
| 2 |
|
sbcied.2 |
|
| 3 |
|
sbciedf.3 |
|
| 4 |
|
sbciedf.4 |
|
| 5 |
2
|
ex |
|
| 6 |
3 5
|
alrimi |
|
| 7 |
|
sbciegft |
|
| 8 |
1 4 6 7
|
syl3anc |
|