This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Proper substitution of classes for sets
sbcco2
Metamath Proof Explorer
Description: A composition law for class substitution. Importantly, x may occur
free in the class expression substituted for A . (Contributed by NM , 5-Sep-2004) (Proof shortened by Andrew Salmon , 8-Jun-2011)
Ref
Expression
Hypothesis
sbcco2.1
⊢ x = y → A = B
Assertion
sbcco2
⊢ [ ˙ x / y ] ˙ [ ˙ B / x ] ˙ φ ↔ [ ˙ A / x ] ˙ φ
Proof
Step
Hyp
Ref
Expression
1
sbcco2.1
⊢ x = y → A = B
2
sbsbc
⊢ x y [ ˙ B / x ] ˙ φ ↔ [ ˙ x / y ] ˙ [ ˙ B / x ] ˙ φ
3
1
equcoms
⊢ y = x → A = B
4
dfsbcq
⊢ A = B → [ ˙ A / x ] ˙ φ ↔ [ ˙ B / x ] ˙ φ
5
4
bicomd
⊢ A = B → [ ˙ B / x ] ˙ φ ↔ [ ˙ A / x ] ˙ φ
6
3 5
syl
⊢ y = x → [ ˙ B / x ] ˙ φ ↔ [ ˙ A / x ] ˙ φ
7
6
sbievw
⊢ x y [ ˙ B / x ] ˙ φ ↔ [ ˙ A / x ] ˙ φ
8
2 7
bitr3i
⊢ [ ˙ x / y ] ˙ [ ˙ B / x ] ˙ φ ↔ [ ˙ A / x ] ˙ φ