This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem sbbibvv

Description: Reversal of substitution. (Contributed by AV, 6-Aug-2023)

Ref Expression
Assertion sbbibvv y y x φ ψ x φ x y ψ

Proof

Step Hyp Ref Expression
1 nfv y φ
2 nfv x ψ
3 1 2 sbbib y y x φ ψ x φ x y ψ