This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Words over a set
Longer string literals
s2dmALT
Metamath Proof Explorer
Description: Alternate version of s2dm , having a shorter proof, but requiring that
A and B are sets. (Contributed by AV , 9-Jan-2020)
(Proof modification is discouraged.) (New usage is discouraged.)
Ref
Expression
Assertion
s2dmALT
⊢ A ∈ S ∧ B ∈ S → dom ⁡ 〈“ A B ”〉 = 0 1
Proof
Step
Hyp
Ref
Expression
1
s2prop
⊢ A ∈ S ∧ B ∈ S → 〈“ A B ”〉 = 0 A 1 B
2
1
dmeqd
⊢ A ∈ S ∧ B ∈ S → dom ⁡ 〈“ A B ”〉 = dom ⁡ 0 A 1 B
3
dmpropg
⊢ A ∈ S ∧ B ∈ S → dom ⁡ 0 A 1 B = 0 1
4
2 3
eqtrd
⊢ A ∈ S ∧ B ∈ S → dom ⁡ 〈“ A B ”〉 = 0 1