This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: Restricted existential specialization, using implicit substitution in
both directions. (Contributed by Zhi Wang, 28-Sep-2024)
|
|
Ref |
Expression |
|
Hypotheses |
rspceb2dv.1 |
|
|
|
rspceb2dv.2 |
|
|
|
rspceb2dv.3 |
|
|
|
rspceb2dv.4 |
|
|
Assertion |
rspceb2dv |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rspceb2dv.1 |
|
| 2 |
|
rspceb2dv.2 |
|
| 3 |
|
rspceb2dv.3 |
|
| 4 |
|
rspceb2dv.4 |
|
| 5 |
1
|
rexlimdva |
|
| 6 |
4
|
rspcev |
|
| 7 |
2 3 6
|
syl2anc |
|
| 8 |
7
|
ex |
|
| 9 |
5 8
|
impbid |
|