This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
rspce
Metamath Proof Explorer
Description: Restricted existential specialization, using implicit substitution.
(Contributed by NM , 26-May-1998) (Revised by Mario Carneiro , 11-Oct-2016)
Ref
Expression
Hypotheses
rspc.1
⊢ Ⅎ x ψ
rspc.2
⊢ x = A → φ ↔ ψ
Assertion
rspce
⊢ A ∈ B ∧ ψ → ∃ x ∈ B φ
Proof
Step
Hyp
Ref
Expression
1
rspc.1
⊢ Ⅎ x ψ
2
rspc.2
⊢ x = A → φ ↔ ψ
3
nfcv
⊢ Ⅎ _ x A
4
nfv
⊢ Ⅎ x A ∈ B
5
4 1
nfan
⊢ Ⅎ x A ∈ B ∧ ψ
6
eleq1
⊢ x = A → x ∈ B ↔ A ∈ B
7
6 2
anbi12d
⊢ x = A → x ∈ B ∧ φ ↔ A ∈ B ∧ ψ
8
3 5 7
spcegf
⊢ A ∈ B → A ∈ B ∧ ψ → ∃ x x ∈ B ∧ φ
9
8
anabsi5
⊢ A ∈ B ∧ ψ → ∃ x x ∈ B ∧ φ
10
df-rex
⊢ ∃ x ∈ B φ ↔ ∃ x x ∈ B ∧ φ
11
9 10
sylibr
⊢ A ∈ B ∧ ψ → ∃ x ∈ B φ