This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jeff Madsen
Groups and related structures
rngopidOLD
Metamath Proof Explorer
Description: Obsolete version of mndpfo as of 23-Jan-2020. Range of an operation
with a left and right identity element. (Contributed by FL , 2-Nov-2009)
(New usage is discouraged.) (Proof modification is discouraged.)
Ref
Expression
Assertion
rngopidOLD
⊢ G ∈ Magma ∩ ExId → ran ⁡ G = dom ⁡ dom ⁡ G
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢ dom ⁡ dom ⁡ G = dom ⁡ dom ⁡ G
2
1
opidonOLD
⊢ G ∈ Magma ∩ ExId → G : dom ⁡ dom ⁡ G × dom ⁡ dom ⁡ G ⟶ onto dom ⁡ dom ⁡ G
3
forn
⊢ G : dom ⁡ dom ⁡ G × dom ⁡ dom ⁡ G ⟶ onto dom ⁡ dom ⁡ G → ran ⁡ G = dom ⁡ dom ⁡ G
4
2 3
syl
⊢ G ∈ Magma ∩ ExId → ran ⁡ G = dom ⁡ dom ⁡ G