This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring isomorphism is a bijection. (Contributed by Jeff Madsen, 16-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngisoval.1 | ||
| rngisoval.2 | |||
| rngisoval.3 | |||
| rngisoval.4 | |||
| Assertion | rngoiso1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngisoval.1 | ||
| 2 | rngisoval.2 | ||
| 3 | rngisoval.3 | ||
| 4 | rngisoval.4 | ||
| 5 | 1 2 3 4 | isrngoiso | |
| 6 | 5 | simplbda | |
| 7 | 6 | 3impa |