This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem rngoa4

Description: Rearrangement of 4 terms in a sum of ring elements. (Contributed by Steve Rodriguez, 9-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ringgcl.1 G = 1 st R
ringgcl.2 X = ran G
Assertion rngoa4 R RingOps A X B X C X D X A G B G C G D = A G C G B G D

Proof

Step Hyp Ref Expression
1 ringgcl.1 G = 1 st R
2 ringgcl.2 X = ran G
3 1 rngoablo R RingOps G AbelOp
4 2 ablo4 G AbelOp A X B X C X D X A G B G C G D = A G C G B G D
5 3 4 syl3an1 R RingOps A X B X C X D X A G B G C G D = A G C G B G D