This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted existential uniqueness and at-most-one quantifier
rmoanid
Metamath Proof Explorer
Description: Cancellation law for restricted at-most-one quantification. (Contributed by Peter Mazsa , 24-May-2018) (Proof shortened by Wolf Lammen , 12-Jan-2025)
Ref
Expression
Assertion
rmoanid
⊢ ∃ * x ∈ A x ∈ A ∧ φ ↔ ∃ * x ∈ A φ
Proof
Step
Hyp
Ref
Expression
1
ibar
⊢ x ∈ A → φ ↔ x ∈ A ∧ φ
2
1
bicomd
⊢ x ∈ A → x ∈ A ∧ φ ↔ φ
3
2
rmobiia
⊢ ∃ * x ∈ A x ∈ A ∧ φ ↔ ∃ * x ∈ A φ