This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Restricted iota (description binder)
riotaund
Metamath Proof Explorer
Description: Restricted iota equals the empty set when not meaningful. (Contributed by NM , 16-Jan-2012) (Revised by Mario Carneiro , 15-Oct-2016)
(Revised by NM , 13-Sep-2018)
Ref
Expression
Assertion
riotaund
⊢ ¬ ∃! x ∈ A φ → ι x ∈ A | φ = ∅
Proof
Step
Hyp
Ref
Expression
1
df-riota
⊢ ι x ∈ A | φ = ι x | x ∈ A ∧ φ
2
df-reu
⊢ ∃! x ∈ A φ ↔ ∃! x x ∈ A ∧ φ
3
iotanul
⊢ ¬ ∃! x x ∈ A ∧ φ → ι x | x ∈ A ∧ φ = ∅
4
2 3
sylnbi
⊢ ¬ ∃! x ∈ A φ → ι x | x ∈ A ∧ φ = ∅
5
1 4
eqtrid
⊢ ¬ ∃! x ∈ A φ → ι x ∈ A | φ = ∅